
Package: evoTS (via r-universe)
October 26, 2024

Title Analyses of Evolutionary Time-Series

Version 1.0.3

Description Facilitates univariate and multivariate analysis of
evolutionary sequences of phenotypic change. The package
extends the modeling framework available in the 'paleoTS'
package. Please see <https://klvoje.github.io/evoTS/index.html>
for information about the package and the implemented models.

License GPL (>= 2)

Encoding UTF-8

Imports paleoTS (>= 0.4-4), mvtnorm, plotly, pracma, MASS, stats,
utils

Maintainer Kjetil Lysne Voje <k.l.voje@nhm.uio.no>

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Suggests rmarkdown, knitr

Depends R (>= 3.5.0)

URL https://klvoje.github.io/evoTS/index.html

BugReports https://github.com/klvoje/evoTS/issues

Repository https://klvoje.r-universe.dev

RemoteUrl https://github.com/klvoje/evots

RemoteRef HEAD

RemoteSha 651458ccd4b940053f9257e3c18a4110b0c2d4db

Contents
as.evoTS.multi.BW.acceldecel.fit . 3
as.evoTS.multi.BW.fit . 4
as.evoTS.multi.OU.fit . 5

1

https://klvoje.github.io/evoTS/index.html
https://klvoje.github.io/evoTS/index.html
https://github.com/klvoje/evoTS/issues

2 Contents

as.evoTS.multi.URW.fit . 6
as.evoTS.multi.URW.shift.fit . 8
as.evoTSfit.OUBM . 9
diameter_S.yellowstonensis . 10
fit.all.univariate . 10
fit.mode.shift . 11
fit.multivariate.OU . 13
fit.multivariate.OU.user.defined . 16
fit.multivariate.URW . 19
fit.multivariate.URW.shift . 21
logL.joint.accel.decel.single.R . 23
logL.joint.accel.decel.single.R.zero.corr . 24
logL.joint.accel_decel . 25
logL.joint.multi.OUOU . 25
logL.joint.multi.OUOU.user . 26
logL.joint.multi.R . 28
logL.joint.OU.BM . 29
logL.joint.single.R . 30
logL.joint.single.R.zero.corr . 31
logL.joint.Stasis.OU . 32
logL.joint.URW.URW . 32
loglik.surface.accel . 33
loglik.surface.decel . 34
loglik.surface.GRW . 35
loglik.surface.OU . 36
loglik.surface.OUBM . 38
loglik.surface.stasis . 39
loglik.surface.URW . 40
make.multivar.evoTS . 42
opt.accel.single.R . 43
opt.accel.single.R.zero.corr . 45
opt.decel.single.R . 47
opt.decel.single.R.zero.corr . 48
opt.joint.accel . 50
opt.joint.decel . 51
opt.joint.OUBM . 53
opt.joint.URW.Stasis . 54
opt.single.R . 55
opt.single.R.zero.corr . 57
plotevoTS . 59
plotevoTS.multivariate . 60
ribs_S.yellowstonensis . 61
sim.accel.decel . 62
sim.multi.OU . 63
sim.multi.URW . 64
sim.OUBM . 65

Index 67

as.evoTS.multi.BW.acceldecel.fit 3

as.evoTS.multi.BW.acceldecel.fit

Class for fit to evolutionary sequence (time-series) models

Description

A function that combines useful information summarizing model fit.

Usage

as.evoTS.multi.BW.acceldecel.fit(
converge,
modelName,
logL,
ancestral.values,
SE.anc,
r,
SE.r,
R,
SE.R,
method,
K,
n,
iter

)

Arguments

converge info on model convergence

modelName description of the model.

logL log-likelihood of model
ancestral.values

maximum-likelihood estimates of the ancestral trait values

SE.anc standard errors of the estimated ancestral states

r maximum-likelihood estimates of the r parameter

SE.r standard error of the r parameter

R maximum-likelihood estimates of the parameters in the R matrix

SE.R standard errors of the parameters in the R matrix

method the parameterization used: Joint

K number of parameters in the model

n sample size

iter the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

4 as.evoTS.multi.BW.fit

Details

This function is used by the model-fitting routines for the Unbiased Random Walk models with an
accelerated and decelerated rate of evoluton to create standardized output

Note

This function is not likely to be called directly by the user.

Author(s)

Kjetil Lysne Voje

as.evoTS.multi.BW.fit Class for fit to evolutionary sequence (time-series) models

Description

A function that combines useful information summarizing model fit.

Usage

as.evoTS.multi.BW.fit(
converge,
modelName,
logL,
ancestral.values,
SE.anc,
R,
SE.R,
shift.point,
method,
K,
n,
iter

)

Arguments

converge info on model convergence

modelName description of the model

logL log-likelihood of model
ancestral.values

maximum-likelihood estimates of the ancestral trait values

SE.anc standard errors of the estimated ancestral states

R maximum-likelihood estimates of the parameters in the R matrix

as.evoTS.multi.OU.fit 5

SE.R standard errors of the parameters in the R matrix
shift.point the sample in the time series that represents the first sample in the second seg-

ment.
method the parameterization used: Joint
K number of parameters in the model
n sample size
iter the number of times the optimization method is run from different starting points.

Default is NULL, meaning the optimization is run once.

Details

This function is used by the model-fitting routines for the multivariate Unbiased Random Walk
models to create standardized output

Note

This function is not likely to be called directly by the user.

Author(s)

Kjetil Lysne Voje

as.evoTS.multi.OU.fit Class for fit to evolutionary sequence (time-series) models

Description

A function that combines useful information summarizing model fit.

Usage

as.evoTS.multi.OU.fit(
converge,
logL,
ancestral.values,
SE.anc,
optima,
SE.optima,
A,
SE.A,
half.life,
R,
SE.R,
method,
K,
n,
iter

)

6 as.evoTS.multi.URW.fit

Arguments

converge info on model convergence

logL log-likelihood of model
ancestral.values

maximum-likelihood estimates of the ancestral trait values

SE.anc standard errors of the estimated ancestral states

optima maximum-likelihood estimates of the optima

SE.optima standard errors of the estimated optimal trait values

A maximum-likelihood estimates of the parameters in the A matrix

SE.A standard errors of the estimated A matrix

half.life the calculated half-life of the evolutionary process

R maximum-likelihood estimates of the parameters in the R matrix

SE.R standard errors of the parameters in the R matrix

method the parameterization used: Joint

K number of parameters in the model

n sample size

iter the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

Details

This function is used by the model-fitting routines for the multivariate Ornstein-Uhlenbeck models
to create standardized output

Note

This function is not likely to be called directly by the user.

Author(s)

Kjetil Lysne Voje

as.evoTS.multi.URW.fit

Class for fit to evolutionary sequence (time-series) models

Description

A function that combines useful information summarizing model fit.

as.evoTS.multi.URW.fit 7

Usage

as.evoTS.multi.URW.fit(
converge,
modelName,
logL,
ancestral.values,
SE.anc,
R,
SE.R,
method,
K,
n,
iter

)

Arguments

converge info on model convergence

modelName description of the model

logL log-likelihood of model
ancestral.values

maximum-likelihood estimates of the ancestral trait values

SE.anc standard errors of the estimated ancestral states

R maximum-likelihood estimates of the parameters in the R matrix

SE.R standard errors of the parameters in the R matrix

method the parameterization used: Joint

K number of parameters in the model

n sample size

iter the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

Details

This function is used by the model-fitting routines for the multivariate Unbiased Random Walk
models to create standardized output

Note

This function is not likely to be called directly by the user.

Author(s)

Kjetil Lysne Voje

8 as.evoTS.multi.URW.shift.fit

as.evoTS.multi.URW.shift.fit

Class for fit to evolutionary sequence (time-series) models

Description

A function that combines useful information summarizing model fit.

Usage

as.evoTS.multi.URW.shift.fit(
converge,
modelName,
logL,
ancestral.values,
SE.anc,
R,
SE.R,
shift.point,
method,
K,
n,
iter

)

Arguments

converge info on model convergence

modelName description of the model

logL log-likelihood of model
ancestral.values

maximum-likelihood estimates of the ancestral trait values

SE.anc standard errors of the estimated ancestral states

R maximum-likelihood estimates of the parameters in the R matrix

SE.R standard errors of the parameters in the R matrix

shift.point the sample in the time series that represents the first sample in the second seg-
ment.

method the parameterization used: Joint

K number of parameters in the model

n sample size

iter the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

as.evoTSfit.OUBM 9

Details

This function is used by the model-fitting routines for the multivariate Unbiased Random Walk
models to create standardized output

Note

This function is not likely to be called directly by the user.

Author(s)

Kjetil Lysne Voje

as.evoTSfit.OUBM Class for fit to evolutionary sequence (time-series) models

Description

A function that combines useful information summarizing model fit.

Usage

as.evoTSfit.OUBM(logL, parameters, modelName, method, K, n, iter, se)

Arguments

logL log-likelihood of model
parameters maximum-likelihood estimates of the parameters
modelName description of the model
method the parameterization used: Joint
K number of parameters in the model
n sample size
iter the number of times the optimization method is run from different starting points.

Default is NULL, meaning the optimization is run once.
se standard errors of parameter estimates

Details

This function is used by the model-fitting routines for the univariate Ornstein-Uhlenbeck model
where the optimum evolves as an Unbiased Random Walk to create standardized output

Note

This function is not likely to be called directly by the user.

Author(s)

Kjetil Lysne Voje

10 fit.all.univariate

diameter_S.yellowstonensis

Evolutionary sequence (time-series) of phenotypic change in diameter
in the lineage Stephanodiscus yellowstonensis

Description

Phenotypic data (diameter) from a centric diatom lineage Stephanodiscus yellowstonensis. The
time series spans about 14 000 years. The data set contains data on valve diameter (measured
in micrometres). The data consists of an object of class paleoTS (diameter_S.yellowstonensis).
Objects of class paleoTS can be analyzed in evoTS. The object (trait data set) contains a vector
of sample means (mm), sample variances (vv), sample sizes (nn) and sample ages (tt). The oldest
sample is listed first. The data spans an interval of 13728 years.

Usage

data(diameter_S.yellowstonensis)

Format

An object of class "paleoTS".

References

Theriot et al. 2006. Late Quaternary rapid morphological evolution of an endemic diatom in Yel-
lowstone Lake, Wyoming. Paleobiology 32:38-54

Examples

ln.diameter<-paleoTS::ln.paleoTS(diameter_S.yellowstonensis)
ln.diameter$tt<-ln.diameter$tt/(max(ln.diameter$tt))
opt.joint.decel(ln.diameter)

fit.all.univariate Fit all univariate models to an evolutionary sequence (time-series).

Description

Wrapper function to find maximum likelihood solutions for all univariate models (excluding models
with mode shifts) to an evolutionary sequence (time-series).

Usage

fit.all.univariate(y, pool = TRUE)

fit.mode.shift 11

Arguments

y an univariate paleoTS object.

pool indicating whether to pool variances across samples

Value

The function returns a list of all investigated models and their highest log-likelihood (and their
corresponding AICc and AICc weight).

Author(s)

Kjetil Lysne Voje

References

Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond.
Paleobiology 32:578–601

Hunt, G., Bell, M. A. & Travis, M. P. Evolution towards a new adaptive optimum: Phenotypic
evolution in a fossil stickleback lineage. Evolution 62:700–710 (2008)

Examples

##Generate a paleoTS object.
x <- paleoTS::sim.GRW(30)

Fit univariate models to the data.
fit.all.univariate(x, pool = TRUE)

fit.mode.shift Fit two models to two separate segments to an evolutionary sequence
(time-series).

Description

Wrapper function to find maximum likelihood solutions to two models to an evolutionary sequence.

Usage

fit.mode.shift(
y,
model1 = c("Stasis", "URW", "GRW", "OU"),
model2 = c("Stasis", "URW", "GRW", "OU"),
fit.all = FALSE,
minb = 7,
shift.point = NULL,
pool = TRUE,

12 fit.mode.shift

silent = FALSE,
hess = FALSE

)

Arguments

y an univariate evoTS object.
model1 the model fitted to the first segment. Options are Stasis, URW, GRW, OU.
model2 the model fitted to the second segment. Options are Stasis, URW, GRW, OU.
fit.all logical indicating whether to fit all pairwise combinations of the four models to

the evolutionary sequence (time-series).
minb the minimum number of samples within a segment to consider
shift.point The sample that split the time-series into two segments. The samples are passed

to the argument as a vector. Default is NULL, which means all possible shift
points will be assessed constrained by how minb is defined.

pool logical indicating whether to pool variances across samples
silent if TRUE, less information is printed to the screen as the model is fit
hess logical, indicating whether to calculate standard errors from the Hessian matrix.

#’

Value

the function returns a list of all investigated models and their highest log-likelihood (and their
corresponding AICc and AICc weight).

logL the log-likelihood of the optimal solution
AICc AIC with a correction for small sample sizes
parameters parameter estimates
modelName abbreviated model name
method Joint consideration of all samples
K number of parameters in the model
n the number of observations/samples
all.logl log-likelihoods for all tested partitions of the series into segments. Will return a

single value if shift points have been given
GG matrix of indices of initial samples of each tested segment configuration; each

column of GG corresponds to the elements of all.logl

In addition, if fit.all=TRUE the function also returns a list of all investigated models and their
highest log-likelihood (and their corresponding AICc and AICc weight).

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

fit.multivariate.OU 13

Author(s)

Kjetil Lysne Voje

References

Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond.
Paleobiology 32:578–601

Hunt, G., Bell, M. A. & Travis, M. P. Evolution towards a new adaptive optimum: Phenotypic
evolution in a fossil stickleback lineage. Evolution 62:700–710 (2008)

Examples

##Generate a paleoTS object.
x <- paleoTS::sim.GRW(30)

Fit a mode-shift model without defining a shift point (the example may take > 5 seconds to run)
fit.mode.shift(x, model1="URW", model2="Stasis")

fit.multivariate.OU Fit predefined multivariate Ornstein-Uhlenbeck models to multivari-
ate evolutionary sequence (time-series) data.

Description

Function to find maximum likelihood solutions to a large suite of predefined multivariate Ornstein-
Uhlenbeck model fitted to multivariate evolutionary sequence (time-series) data.

Usage

fit.multivariate.OU(
yy,
A.matrix = "diag",
R.matrix = "symmetric",
method = "Nelder-Mead",
hess = FALSE,
pool = TRUE,
trace = FALSE,
iterations = NULL,
iter.sd = NULL,
user.init.diag.A = NULL,
user.init.diag.R = NULL,
user.init.off.diag.A = NULL,
user.init.off.diag.R = NULL,
user.init.theta = NULL,
user.init.anc = NULL

)

14 fit.multivariate.OU

Arguments

yy a multivariate evoTS object.

A.matrix the pull matrix. The options are "diag", "upper.tri", "lower.tri", and "full". De-
fault is "diag". See details (or vignette) for more info on what the different
options mean.

R.matrix the drift matrix. The options are "diag" and "symmetric".

method optimization method, passed to function optim. Default is "Nelder-Mead".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

pool indicating whether to pool variances across samples

trace logical, indicating whether information on the progress of the optimization is
printed.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

user.init.diag.A

starting values for the optimization routine of the diagonal elements of the A
matrix. Default is NULL.

user.init.diag.R

starting values for the optimization routine of the diagonal elements of the R
matrix. Default is NULL.

user.init.off.diag.A

starting values for the optimization routine of the off-diagonal elements of the
A matrix. Default is NULL.

user.init.off.diag.R

starting values for the optimization routine of the off-diagonal elements of the R
matrix. Default is NULL.

user.init.theta

starting values for the optimization routine of the optima. Default is NULL.

user.init.anc starting values for the optimization routine of the ancestral values. Default is
NULL.

Details

A detailed explanation of the predefined models that can be fitted using the function is given in the
online vignette (https://klvoje.github.io/evoTS/index.html), but a short summary is provided here.
Note that this function provides the user with fixed options for how to parameterize the A and R
matrices. For full flexibility, the user is allowed to customize the parameterization of the A and
R matrix in the ’fit.multivariate.OU.user.defined’ function. The type of trait dynamics is defined
based on how the pull matrix (A) and drift matrix (R) are defined. The function allows testing
four broad categories of models: 1 Independent evolution (A.matrix ="diag", R.matrix = "diag");
2 Independent adaptation (A.matrix ="diag", R.matrix = "symmetric"); 3 Non-independent adapta-
tion (A.matrix = "upper.tri"/"lower.tri"/full", R.matrix = "diagonal"); 4 Non-independent evolution
(A.matrix = "upper.tri"/"lower.tri"/"full", R.matrix = "symmetric"). Setting the A.matrix to "diago-
nal" means the traits do not affect each others optimum (A matrix). A "diagonal" R matrix means

fit.multivariate.OU 15

the stochastic changes in the traits are assumed to be uncorrelated. A "symmetric" R matrix means
the stochastic changes in the traits are assumed to be correlated, i.e. that they are non-independent.
A "full" parameterization of A estimates the effect of each trait on the optima on the other traits. The
"upper.tri" option parameterize the model in such a way that the first layer (first trait in the data set)
adapts non-independently because its optimum is affected by all other traits included in the data set,
while the bottom layer (the last trait in the data set) adapts independently (as an Ornstein Uhlenbeck
process). Layers in between the upper- and lower layer (not the first or last trait in the data set (if
there are more than two traits in the data set)) evolve non-independently as their optimum is affected
by all layers/traits below themselves. The option "lower.tri" defines the causality the opposite way
compared to "upper.tri". It is also possible to implement a model where the bottom layer (last trait
in the data set) evolve as an Unbiased random walk (akin to a Brownian motion) which affects the
optima for all other traits in the data set (i.e. all layers except the bottom layer). This model can be
fitted by defining A.matrix ="OUBM", which will override how the R matrix is defined.

The function searches - using an optimization routine - for the maximum-likelihood solution for the
chosen multivariate Ornstein-Uhlenbeck model. The argument ’method’ is passed to the ’optim’
function and is included for the convenience of users to better control the optimization routine.
Note that the the default method (Nelder-Mead) seems to work for most evolutionary sequences.
The method L-BFGS-B allows box-constraints on some parameters (e.g. non-negative variance
parameters) and is faster than Nelder-Mead, but is less stable than the default method (Nelder-
Mead).

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Ornstein-Uhlenbeck model (from the paleoTS package) fitted to each time-series separately.

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

There is no guarantee that the likelihood can be computed with the initial parameters provided by
the function. The starting values for fitting the multivariate OU model are based on maximum
likelihood parameter estimates for the univariate OU model fitted to each trait separately, which
seems to provide sensible (and working) initial parameter estimates for almost all tested data sets.
However, the provided initial parameters may fail depending on the nature of the data. If an er-
ror message is returned saying "function cannot be evaluated at initial parameters", the user can
try to start the optimization procedure from other initial parameter values using "user.init.diag.A",
"user.init.diag.R", "user.init.off.diag.A", "user.init.off.diag.R", "user.init.theta", and "user.init.anc."
It is usually the initial guess of the off-diagonal elements of the A and R matrices that prevents the
optimization routine to work. It is therefore recommended to only try to change these initial values
before experimenting with different starting values for the diagonal of the A and R matrices.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, optima, A, and
R). The half-life is also provided, which is the The last part of the output gives information about
the number of parameters in the model (K), number of samples in the data (n) and number of times
the optimization routine was run (iter).

16 fit.multivariate.OU.user.defined

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

References

Reitan, T., Schweder, T. & Henderiks, J. Phenotypic evolution studied by layered stochastic differ-
ential equations. Ann Appl Statistics 6, 1531–1551 (2012).

Bartoszek, K., Pienaar, J., Mostad, P., Andersson, S. & Hansen, T. F. A phylogenetic comparative
method for studying multivariate adaptation. J Theor Biol 314, 204–215 (2012).

Clavel, J., Escarguel, G. & Merceron, G. mvmorph: an r package for fitting multivariate evolution-
ary models to morphometric data. Methods Ecol Evol 6, 1311–1319 (2015).

Examples

Generate a evoTS object by simulating a multivariate dataset
x <- sim.multi.OU(15)

##Fit a multivariate Ornstein-Uhlenbeck model to the data. This example will run for a long time.
fit.multivariate.OU(x, A.matrix="diag", R.matrix="symmetric")

fit.multivariate.OU.user.defined

Fit user-defined multivariate Ornstein-Uhlenbeck models to multivari-
ate evolutionary sequence (time-series) data.

Description

Function to find maximum likelihood solutions to a multivariate Ornstein-Uhlenbeck model fitted
using user-defined A and R matrices.

Usage

fit.multivariate.OU.user.defined(
yy,
A.user = NULL,
R.user = NULL,
method = "Nelder-Mead",

fit.multivariate.OU.user.defined 17

hess = FALSE,
pool = TRUE,
trace = FALSE,
iterations = NULL,
iter.sd = NULL,
user.init.diag.A = NULL,
user.init.upper.diag.A = NULL,
user.init.lower.diag.A = NULL,
user.init.diag.R = NULL,
user.init.off.diag.R = NULL,
user.init.theta = NULL,
user.init.anc = NULL

)

Arguments

yy a multivariate evoTS object.
A.user the pull matrix. A user-defined A matrix.
R.user the drift matrix. A user-defined R matrix.
method optimization method, passed to function optim. Default is "Nelder-Mead".
hess logical, indicating whether to calculate standard errors from the Hessian matrix.
pool indicating whether to pool variances across samples
trace logical, indicating whether information on the progress of the optimization is

printed.
iterations the number of times the optimization method is run from different starting points.

Default is NULL, meaning the optimization is run once.
iter.sd defines the standard deviation of the Gaussian distribution from which starting

values for the optimization routine is run. Default is 1.
user.init.diag.A

starting values for the optimization routine of the diagonal elements of the A
matrix. Default is NULL.

user.init.upper.diag.A

starting values for the optimization routine of the upper diagonal elements of the
A matrix. Default is NULL.

user.init.lower.diag.A

starting values for the optimization routine of the lower diagonal elements of the
A matrix. Default is NULL.

user.init.diag.R

starting values for the optimization routine of the diagonal elements of the R
matrix. Default is NULL.

user.init.off.diag.R

starting values for the optimization routine of the off-diagonal elements of the R
matrix. Default is NULL.

user.init.theta

starting values for the optimization routine of the optima. Default is NULL.
user.init.anc starting values for the optimization routine of the ancestral values. Default is

NULL.

18 fit.multivariate.OU.user.defined

Details

This function provides users the flexibility to define their own A and R matrices. The possibility
to define any A matrices enable detailed investigation of specific evolutionary hypotheses. The
parameters to be estimated in the matrices are indicated by the value 1. All other entries in the
matrix must be 0.

The function searches - using an optimization routine - for the maximum-likelihood solution for the
chosen multivariate Ornstein-Uhlenbeck model. The argument ’method’ is passed to the ’optim’
function and is included for the convenience of users to better control the optimization routine.
Note that the the default method (Nelder-Mead) seems to work for most evolutionary sequences.
The method L-BFGS-B allows box-constraints on some parameters (e.g. non-negative variance
parameters) and is faster than Nelder-Mead, but is less stable than the default method (Nelder-
Mead).

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Ornstein-Uhlenbeck model (from the paleoTS package) fitted to each time-series separately.

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

There is no guarantee that the likelihood can be computed with the initial parameters provided by
the function. The starting values for fitting the multivariate OU model are based on maximum
likelihood parameter estimates for the univariate OU model fitted to each trait separately, which
seems to provide sensible (and working) initial parameter estimates for almost all tested data sets.
However, the provided initial parameters may fail depending on the nature of the data. If an er-
ror message is returned saying "function cannot be evaluated at initial parameters", the user can
try to start the optimization procedure from other initial parameter values using "user.init.diag.A",
"user.init.upper.diag.A", "user.init.lower.diag.A", "user.init.diag.R", "user.init.off.diag.R", "user.init.theta",
and "user.init.anc." It is usually the initial guess of the off-diagonal elements of the A and R ma-
trices that prevents the optimization routine to work. It is therefore recommended to only try to
change these initial values before experimenting with different starting values for the diagonal of
the A and R matrices.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, optima, A, and
R). The half-life is also provided, which is the The last part of the output gives information about
the number of parameters in the model (K), number of samples in the data (n) and number of times
the optimization routine was run (iter).

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

fit.multivariate.URW 19

Author(s)

Kjetil Lysne Voje

References

Reitan, T., Schweder, T. & Henderiks, J. Phenotypic evolution studied by layered stochastic differ-
ential equations. Ann Appl Statistics 6, 1531–1551 (2012).

Bartoszek, K., Pienaar, J., Mostad, P., Andersson, S. & Hansen, T. F. A phylogenetic comparative
method for studying multivariate adaptation. J Theor Biol 314, 204–215 (2012).

Clavel, J., Escarguel, G. & Merceron, G. mvmorph: an r package for fitting multivariate evolution-
ary models to morphometric data. Methods Ecol Evol 6, 1311–1319 (2015).

Examples

Generate a evoTS object by simulating a multivariate dataset
x <- sim.multi.OU(15)

Define an A matrix that is lower diagonal.
A <- matrix(c(1,0,1,1), nrow=2, byrow=TRUE)

Define a diagonal R matrix.
R <- matrix(c(1,0,0,1), nrow=2, byrow=TRUE)

Fit the multivariate Ornstein-Uhlenbeck model to the data. This example will run for a long time.
fit.multivariate.OU.user.defined(x, A.user=A, R.user=R, trace=TRUE)

fit.multivariate.URW Fit multivariate Unbiased Random Walk models to multivariate evolu-
tionary sequence (time-series) data.

Description

Function to find maximum likelihood solutions to a multivariate Unbiased Random Walk model.

Usage

fit.multivariate.URW(
yy,
R = "symmetric",
r = "fixed",
method = "L-BFGS-B",
hess = FALSE,
pool = TRUE,
trace = FALSE,
iterations = NULL,
iter.sd = NULL

)

20 fit.multivariate.URW

Arguments

yy a multivariate evoTS object.

R the drift matrix. The options are "diagonal" and "symmetric"

r parameter describing the exponential increase/decrease in rate across time. The
options are "fixed", "accel" and "decel".

method optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

pool indicating whether to pool variances across samples

trace logical, indicating whether information on the progress of the optimization is
printed.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

Details

The function allows the users to test six variants of multivariate Unbiased Random Walk models.
There are two options for the structure of the R matrix. A "diagonal" R matrix means the stochastic
changes in the traits are assumed to be uncorrelated. A "symmetric" R matrix means the stochastic
changes in the traits are assumed to be correlated, i.e. that they are non-independent.

There are three options for the ’r’ parameter. The "fixed" option means there is no change in the
rate of change across time (r = 0). Setting r to "fixed" therefore fits a regular multivariate Unbiased
Random Walk. The "decel" and "accel" options make the rate of change (the R matrix) decay (r <
0) and increase (r > 0) exponentially through time, respectively.

The function searches - using an optimization routine - for the maximum-likelihood solution for
the chosen multivariate Unbiased Random Walk model. The argument ’method’ is passed to the
’optim’ function and is included for the convenience of users to better control the optimization
routine. The the default method (L-BFGS-B) seems to work for most evolutionary sequences.

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Unbiased Random Walk model (from the paleoTS package) fitted to each time-series separately.

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, R). The last part of
the output gives information about the number of parameters in the model (K), number of samples
in the data (n) and number of times the optimization routine was run (iter).

fit.multivariate.URW.shift 21

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

References

Revell, L. J. & Harmon, L. Testing quantitative genetic hypotheses about the evolutionary rate
matrix for continuous characters. Evolutionary Ecology Research 10, 311–331 (2008).

Voje, K. L. Testing eco-evolutionary predictions using fossil data: Phyletic evolution following
ecological opportunity. Evolution 74, 188–200 (2020).

Examples

Generate an evoTS object by simulating a multivariate dataset
x <- sim.multi.URW(30)

Fit a multivariate Unbiased Random Walk model to the data, allowing for correlated changes.
fit.multivariate.URW(x, R = "symmetric", r = "fixed")

fit.multivariate.URW.shift

Fit separate multivariate Unbiased Random Walk models to two dif-
ferent segments of a multivariate evolutionary sequence (time-series).

Description

Function to find maximum likelihood solutions for multivariate Unbiased Random Walk models
fitted to two different segments of a multivariate evolutionary sequence (time-series).

Usage

fit.multivariate.URW.shift(
yy,
minb = 10,
hess = FALSE,
pool = TRUE,
shift.point = NULL,
method = "L-BFGS-B",
trace = FALSE,

22 fit.multivariate.URW.shift

iterations = NULL,
iter.sd = NULL

)

Arguments

yy a multivariate evoTS object.

minb the minimum number of samples within a segment to consider.

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

pool indicating whether to pool variances across samples

shift.point the sample in the time series that represents the first sample in the second seg-
ment.

method optimization method, passed to function optim. Default is "L-BFGS-B".

trace logical, indicating whether information on the progress of the optimization is
printed.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

Details

The function searches - using an optimization routine - for the maximum-likelihood solution for a
multivariate Unbiased Random Walk model ti two non-overlapping segments in the time series.

The argument ’method’ is passed to the ’optim’ function and is included for the convenience of
users to better control the optimization routine. The the default method (L-BFGS-B) seems to work
for most evolutionary sequences.

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Unbiased Random Walk model (from the paleoTS package) fitted to each time-series separately.

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, R). The last part of
the output gives information about the number of parameters in the model (K), number of samples
in the data (n) and number of times the optimization routine was run (iter).

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of

logL.joint.accel.decel.single.R 23

sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

References

Revell, L. J. & Harmon, L. Testing quantitative genetic hypotheses about the evolutionary rate
matrix for continuous characters. Evolutionary Ecology Research 10, 311–331 (2008).

Examples

Generate an evoTS object by simulating a multivariate dataset
x <- sim.multi.URW(60)

Fit two multivariate Unbiased Random Walk models to separate parts of the time-series.
fit.multivariate.URW.shift(x, shift.point = 31)

logL.joint.accel.decel.single.R

Log-likelihoods for evolutionary models

Description

Returns log-likelihood for a multivariate Unbiased Random Walk model with accelerating or decel-
erating rates of evolution through time.

Usage

logL.joint.accel.decel.single.R(init.par, y, m, n, anc.values, yy)

Arguments

init.par initial (starting) parameters values

y vector containing all trait values from all traits

m number of traits

n number of populations

anc.values initial values for the ancestral trait values

yy a multivariate evoTS object

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

24 logL.joint.accel.decel.single.R.zero.corr

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

logL.joint.accel.decel.single.R.zero.corr

Log-likelihoods for evolutionary models

Description

Returns log-likelihood for a multivariate Unbiased Random Walk model with uncorrelated changes
and with accelerating or decelerating rates of evolution through time.

Usage

logL.joint.accel.decel.single.R.zero.corr(init.par, y, m, n, anc.values, yy)

Arguments

init.par initial (starting) parameters values

y vector containing all trait values from all traits

m number of traits

n number of populations

anc.values initial values for the ancestral trait values

yy a multivariate evoTS object

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

logL.joint.accel_decel 25

logL.joint.accel_decel

Log-likelihoods for evolutionary models

Description

Returns log-likelihood for an Unbiased Random Walk with an accelerating or decelerating rate of
change through time.

Usage

logL.joint.accel_decel(p, y)

Arguments

p parameters of the model to be optimized

y a paleoTS object

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

logL.joint.multi.OUOU Log-likelihoods for evolutionary models

Description

Returns log-likelihood for a multivariate Ornstein-Uhlenbeck model.

Usage

logL.joint.multi.OUOU(init.par, yy, A.matrix, R.matrix)

26 logL.joint.multi.OUOU.user

Arguments

init.par initial (starting) parameters values

yy a multivariate evoTS object

A.matrix the pull matrix.

R.matrix the drift matrix..

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

logL.joint.multi.OUOU.user

Log-likelihoods for evolutionary models

Description

Returns log-likelihood for a multivariate Ornstein-Uhlenbeck model with used defined A and R
matrices..

Usage

logL.joint.multi.OUOU.user(
init.par,
yy,
A.user,
R.user,
locations.A,
location.diag.A,
location.upper.tri.A,
location.lower.tri.A,
locations.R,
location.diag.R,
location.upper.tri.R

)

logL.joint.multi.OUOU.user 27

Arguments

init.par initial (starting) parameters values

yy a multivariate evoTS object

A.user the pull matrix.

R.user the drift matrix.

locations.A location (row and column) of parameters (elements) in the A matrix that is esti-
mated

location.diag.A

location (row and column) of parameters (elements) in the diagonal of the A
matrix that is estimated

location.upper.tri.A

location (row and column) of parameters (elements) in the upper triangle of the
A matrix that is estimated

location.lower.tri.A

location (row and column) of parameters (elements) in the lower triangle of the
A matrix that is estimated

locations.R location (row and column) of parameters (elements) in the R matrix that is esti-
mated

location.diag.R

location (row and column) of parameters (elements) in the diagonal of the R
matrix that is estimated

location.upper.tri.R

location (row and column) of parameters (elements) in the upper triangle of the
R matrix that is estimated

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

28 logL.joint.multi.R

logL.joint.multi.R Log-likelihoods for evolutionary models

Description

Returns log-likelihood for a multivariate Unbiased Random Walk model fitted to separate segments
of a multivariate time series.

Usage

logL.joint.multi.R(init.par, C, y, m, n, anc.values, yy)

Arguments

init.par initial (starting) parameters values

C distance matrix

y vector containing all trait values from all traits

m number of traits

n number of populations

anc.values initial values for the ancestral trait values

yy a multivariate evoTS object

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

logL.joint.OU.BM 29

logL.joint.OU.BM Log-likelihoods for evolutionary models

Description

Returns log-likelihood for an Ornstein-Uhlenbeck model where the optimum evolves as a Unbiased
Random Walk. The movement of the optimum is not parameterized based on separate data.

Usage

logL.joint.OU.BM(p, y, opt.anc)

Arguments

p parameters of the model to be optimized

y a paleoTS object

opt.anc logical, indicating if the ancestral trait value is at the optimum (TRUE) or dis-
placed from the optimum (FALSE)

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

References

Hansen, T. F., Pienaar, J. & Orzack, S. H. A Comparative Method for Studying Adaptation to a
Randomly Evolving Environment. Evolution 62, 1965–1977 (2008).

30 logL.joint.single.R

logL.joint.single.R Log-likelihoods for evolutionary models

Description

Returns log-likelihood for a multivariate Unbiased Random Walk model.

Usage

logL.joint.single.R(init.par, C, y, m, n, anc.values, yy)

Arguments

init.par initial (starting) parameters values

C distance matrix

y vector containing all trait values from all traits

m number of traits

n number of populations

anc.values initial values for the ancestral trait values

yy a multivariate evoTS object

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

logL.joint.single.R.zero.corr 31

logL.joint.single.R.zero.corr

Log-likelihoods for evolutionary models

Description

Returns log-likelihood for a multivariate Unbiased Random Walk model with uncorrelated changes.

Usage

logL.joint.single.R.zero.corr(init.par, C, y, m, n, anc.values, yy)

Arguments

init.par initial (starting) parameters values

C distance matrix

y vector containing all trait values from all traits

m number of traits

n number of populations

anc.values initial values for the ancestral trait values

yy a multivariate evoTS object

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

32 logL.joint.URW.URW

logL.joint.Stasis.OU Log-likelihoods for evolutionary models

Description

Returns log-likelihood for a model with stasis in the first segment and an Ornstein-Uhlenbeck pro-
cess in the second segment. .

Usage

logL.joint.Stasis.OU(p, y, gg)

Arguments

p parameters of the model to be optimized

y a paleoTS object

gg numeric vector indicating membership of each sample in a segment

Details

In general, users will not be access these functions directly, but instead use the optimization func-
tions, which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

logL.joint.URW.URW Log-likelihoods for evolutionary models

Description

Returns log-likelihood for a model with an Unbiased Random Walk in the first segment and an
Unbiased Random Walk in the second segment.

Usage

logL.joint.URW.URW(p, y, gg)

loglik.surface.accel 33

Arguments

p parameters of the model to be optimized

y a paleoTS object

gg numeric vector indicating membership of each sample in a segment

Details

In general, users will not access these functions directly, but instead use the optimization functions,
which use these functions to find the best-supported parameter values.

Value

The log-likelihood of the parameter estimates, given the data.

Author(s)

Kjetil Lysne Voje

loglik.surface.accel Calculate the log-likelihood surface for a part of parameter space

Description

Function to calculate the log-likelihood surface for a part of parameter space for an Unbiased Ran-
dom Walk with an accelerated rate of evolution.

Usage

loglik.surface.accel(y, vstep.vec, r.vec, pool = TRUE)

Arguments

y an univariate paleoTS object.

vstep.vec vector containing the parameter values of the variance parameter to be evaluated

r.vec vector containing the parameter values of the r parameter to be evaluated

pool indicating whether to pool variances across samples

Value

the function returns the range of parameter values that are within two log-likelihood units from the
best (maximum) parameter estimate and a log-likelihood surface.

34 loglik.surface.decel

Note

How fine-scaled the estimated log-likelihood surface is depends on the step size between the values
in the input-vectors. The step-size therefore determines how accurate the representation of the
support surface is, including the returned upper and lower estimates printed in the console. The
range of the input vectors needs to be increased if the confidence interval includes the boundary of
the input vector. Note also that it might be wise to include the maximum likelihood estimates as
part of the input vectors. The computed support surface is conditional on the best estimates of the
other model parameters that are not part of the support surface (e.g. the estimated ancestral trait
value).

Author(s)

Kjetil Lysne Voje

Examples

Generate a paleoTS objects
x <- sim.accel.decel(50)

Fit the model to the data.
x1<-opt.joint.accel(x)

Create log-likelihood surface (the example may take > 5 seconds to run)
loglik.surface.accel(x, vstep.vec = seq(0,4,0.005), r.vec = seq(0.15,0.25,0.005))

loglik.surface.decel Calculate the log-likelihood surface for a part of parameter space

Description

Function to calculate the log-likelihood surface for a part of parameter space for an Unbiased Ran-
dom Walk with an decelerated rate of evolution.

Usage

loglik.surface.decel(y, vstep.vec, r.vec, pool = TRUE)

Arguments

y an univariate paleoTS object.

vstep.vec vector containing the parameter values of the variance parameter to be evaluated

r.vec vector containing the parameter values of the r parameter to be evaluated

pool indicating whether to pool variances across samples

loglik.surface.GRW 35

Value

the function returns the range of parameter values that are within two log-likelihood units from the
best (maximum) parameter estimate and a log-likelihood surface.

Note

How fine-scaled the estimated log-likelihood surface is depends on the step size between the values
in the input-vectors. The step-size therefore determines how accurate the representation of the
support surface is, including the returned upper and lower estimates printed in the console. The
range of the input vectors needs to be increased if the confidence interval includes the boundary of
the input vector. Note also that it might be wise to include the maximum likelihood estimates as
part of the input vectors. The computed support surface is conditional on the best estimates of the
other model parameters that are not part of the support surface (e.g. the estimated ancestral trait
value).

Author(s)

Kjetil Lysne Voje

Examples

Generate a paleoTS objects
x <- sim.accel.decel(30, r=-0.5)

Fit the model to the data.
x1<-opt.joint.decel(x)

Create log-likelihood surface (the example may take > 5 seconds to run)
loglik.surface.decel(x, vstep.vec = seq(0, 5, 0.1), r.vec = seq(-1, 0, 0.01))

loglik.surface.GRW Calculate the log-likelihood surface for a part of parameter space

Description

Function to calculate the log-likelihood surface for a part of parameter space for a General Random
Walk.

Usage

loglik.surface.GRW(y, mstep.vec, vstep.vec, pool = TRUE)

36 loglik.surface.OU

Arguments

y an univariate paleoTS object.

mstep.vec vector containing the parameter values of the mstep parameter to be evaluated

vstep.vec vector containing the parameter values of the variance parameter to be evaluated

pool indicating whether to pool variances across samples

Value

the function returns the range of parameter values that are within two log-likelihood units from the
best (maximum) parameter estimate and a log-likelihood surface.

Note

How fine-scaled the estimated log-likelihood surface is depends on the step size between the values
in the input-vectors. The step-size therefore determines how accurate the representation of the
support surface is, including the returned upper and lower estimates printed in the console. The
range of the input vectors needs to be increased if the confidence interval includes the boundary of
the input vector. Note also that it might be wise to include the maximum likelihood estimates as
part of the input vectors. The computed support surface is conditional on the best estimates of the
other model parameters that are not part of the support surface (e.g. the estimated ancestral trait
value).

Author(s)

Kjetil Lysne Voje

Examples

Generate a paleoTS objects
x <- paleoTS::sim.GRW(30)

Fit the the model to the data.
x1<-paleoTS::opt.joint.GRW(x)

Create log-likelihood surface (the example may take > 5 seconds to run)
loglik.surface.GRW(x, mstep.vec= seq(0,0.3,0.01), vstep.vec = seq(0,0.3,0.01))

loglik.surface.OU Calculate the log-likelihood surface for a part of parameter space

Description

Function to calculate the log-likelihood surface for a part of parameter space for a Ornstein-Uhlenbeck
model.

loglik.surface.OU 37

Usage

loglik.surface.OU(
y,
stat.var.vec,
h.vec,
anc = NULL,
theta = NULL,
pool = TRUE

)

Arguments

y an univariate paleoTS object.

stat.var.vec vector containing the parameter values of the stationary variance to be evaluated

h.vec vector containing the parameter values of the half life to be evaluated

anc the ancestral state

theta the optimum

pool indicating whether to pool variances across samples

Value

the function returns the range of parameter values that are within two log-likelihood units from the
best (maximum) parameter estimate and a log-likelihood surface.

Note

How fine-scaled the estimated log-likelihood surface is depends on the step size between the values
in the input-vectors. The step-size therefore determines how accurate the representation of the
support surface is, including the returned upper and lower estimates printed in the console. The
range of the input vectors needs to be increased if the confidence interval includes the boundary of
the input vector. Note also that it might be wise to include the maximum likelihood estimates as
part of the input vectors. The computed support surface is conditional on the best estimates of the
other model parameters that are not part of the support surface (e.g. the estimated ancestral trait
value).

Author(s)

Kjetil Lysne Voje

Examples

Generate a paleoTS objects
x <- paleoTS::sim.OU(40)

Fit the model to the data.
x1<-paleoTS::opt.joint.OU(x)

##calculate half-life from model output

38 loglik.surface.OUBM

log(2)/x1$parameters[4]

##calculate stationary variance from model output
x1$parameters[2]/(2*x1$parameters[4])

Create log-likelihood surface (the example may take > 5 seconds to run)
loglik.surface.OU(x, stat.var.vec=seq(0.001,0.5,0.01), h.vec=seq(0.01,10, 0.1))

loglik.surface.OUBM Calculate the log-likelihood surface for a part of parameter space

Description

Function to calculate the log-likelihood surface for a part of parameter space for a Ornstein-Uhlenbeck
model where the optimum changes according to an Unbiased Random Walk.

Usage

loglik.surface.OUBM(
y,
stat.var.vec,
h.vec,
anc = NULL,
theta.0 = NULL,
vo = NULL,
opt.anc = TRUE,
pool = TRUE

)

Arguments

y an univariate paleoTS object.

stat.var.vec vector containing the parameter values of the stationary variance to be evaluated

h.vec vector containing the parameter values of the half life to be evaluated

anc the ancestral state

theta.0 the optimum

vo the variance (vstep) parameter for the optimum

opt.anc logical, indicating whether the the ancestral trait state is at the optimum.

pool indicating whether to pool variances across samples

Value

the function returns the range of parameter values that are within two log-likelihood units from the
best (maximum) parameter estimate and a log-likelihood surface.

loglik.surface.stasis 39

Note

How fine-scaled the estimated log-likelihood surface is depends on the step size between the values
in the input-vectors. The step-size therefore determines how accurate the representation of the
support surface is, including the returned upper and lower estimates printed in the console. The
range of the input vectors needs to be increased if the confidence interval includes the boundary of
the input vector. Note also that it might be wise to include the maximum likelihood estimates as
part of the input vectors. The computed support surface is conditional on the best estimates of the
other model parameters that are not part of the support surface (e.g. the estimated ancestral trait
value).

Author(s)

Kjetil Lysne Voje

Examples

Generate a paleoTS objects
x <- sim.OUBM(40)

Fit the model.
x1<-opt.joint.OUBM(x)

##calculate half-life from model output
log(2)/x1$parameters[3]

##calculate stationary variance from model output
x1$parameters[2]/(2*x1$parameters[3])

Create log-likelihood surface (the example may take > 5 seconds to run)
loglik.surface.OUBM(x, stat.var.vec=seq(0,4,0.01), h.vec=seq(0.0,5, 0.1))

loglik.surface.stasis Calculate the log-likelihood surface for a part of parameter space

Description

Function to calculate the log-likelihood surface for a part of parameter space for the Stasis model.

Usage

loglik.surface.stasis(y, theta.vec, omega.vec, pool = TRUE)

40 loglik.surface.URW

Arguments

y an univariate paleoTS object.

theta.vec vector containing the parameter values of the theta parameter to be evaluated

omega.vec vector containing the parameter values of the omega parameter to be evaluated

pool indicating whether to pool variances across samples

Value

the function returns the range of parameter values that are within two log-likelihood units from the
best (maximum) parameter estimate and a log-likelihood surface.

Note

How fine-scaled the estimated log-likelihood surface is depends on the step size between the values
in the input-vectors. The step-size therefore determines how accurate the representation of the
support surface is, including the returned upper and lower estimates printed in the console. The
range of the input vectors needs to be increased if the confidence interval includes the boundary of
the input vector. Note also that it might be wise to include the maximum likelihood estimates as
part of the input vectors. The computed support surface is conditional on the best estimates of the
other model parameters that are not part of the support surface (e.g. the estimated ancestral trait
value).

Author(s)

Kjetil Lysne Voje

Examples

Generate a paleoTS objects
x <- paleoTS::sim.Stasis(30)

Fit the the model to the data.
x1<-paleoTS::opt.joint.Stasis(x)

Create log-likelihood surface (the example may take > 5 seconds to run)
loglik.surface.stasis(x, theta.vec= seq(-0.15,0.1,0.001), omega.vec = seq(0,0.1,0.001))

loglik.surface.URW Calculate the log-likelihood surface for a part of parameter space

Description

Function to calculate the log-likelihood surface for a part of parameter space for a Unbiased Random
Walk.

loglik.surface.URW 41

Usage

loglik.surface.URW(y, vstep.vec, pool = TRUE)

Arguments

y an univariate paleoTS object.

vstep.vec vector containing the parameter values of the variance parameter to be evaluated

pool indicating whether to pool variances across samples

Value

the function returns the range of parameter values that are within two log-likelihood units from the
best (maximum) parameter estimate and a log-likelihood surface.

Note

How fine-scaled the estimated log-likelihood surface is depends on the step size between the values
in the input-vectors. The step-size therefore determines how accurate the representation of the
support surface is, including the returned upper and lower estimates printed in the console. The
range of the input vectors needs to be increased if the confidence interval includes the boundary of
the input vector. Note also that it might be wise to include the maximum likelihood estimates as
part of the input vectors. The computed support surface is conditional on the best estimates of the
other model parameters that are not part of the support surface (e.g. the estimated ancestral trait
value).

Author(s)

Kjetil Lysne Voje

Examples

Generate a paleoTS objects
x <- paleoTS::sim.GRW(30)

Fit a the model to the data by defining shift points.
x1<-paleoTS::opt.joint.URW(x)

Create log-likelihood surface (the example may take > 5 seconds to run)
loglik.surface.URW(x, vstep.vec = seq(0,0.5,0.001))

42 make.multivar.evoTS

make.multivar.evoTS Makes a multivariate data set of

Description

Function to make a multivariate data set consisting of two or more evolutionary sequences (time-
series).

Usage

make.multivar.evoTS(
evoTS.1 = NULL,
evoTS.2 = NULL,
evoTS.3 = NULL,
evoTS.4 = NULL,
evoTS.5 = NULL,
evoTS.6 = NULL,
evoTS.7 = NULL,
evoTS.8 = NULL,
evoTS.9 = NULL,
evoTS.10 = NULL

)

Arguments

evoTS.1 an univariate evolutionary sequences (time-series) on the format used in paleoTS

evoTS.2 an univariate evolutionary sequences (time-series) on the format used in paleoTS

evoTS.3 an univariate evolutionary sequences (time-series) on the format used in paleoTS
(optional)

evoTS.4 an univariate evolutionary sequences (time-series) on the format used in paleoTS
(optional)

evoTS.5 an univariate evolutionary sequences (time-series) on the format used in paleoTS
(optional)

evoTS.6 an univariate evolutionary sequences (time-series) on the format used in paleoTS
(optional)

evoTS.7 an univariate evolutionary sequences (time-series) on the format used in paleoTS
(optional)

evoTS.8 an univariate evolutionary sequences (time-series) on the format used in paleoTS
(optional)

evoTS.9 an univariate evolutionary sequences (time-series) on the format used in paleoTS
(optional)

evoTS.10 an univariate evolutionary sequences (time-series) on the format used in paleoTS
(optional)

opt.accel.single.R 43

Details

See the function as.paleoTS for details. See also read.paleoTS, which is often a more convenient
way for getting the relevant data from text files.

Value

a multivariate evoTS object that can be analysed with functions fitting multivariate models (e.g.
fit.multivariate.OU, fit.multivariate.URW)

Author(s)

Kjetil Lysne Voje

Examples

Generate two evolutionary sequences (time-series)
x1 <- paleoTS::sim.GRW(60)
x2 <- paleoTS::sim.GRW(60)

Make a multivariate data set
x1_x2<-make.multivar.evoTS(x1, x2)

opt.accel.single.R Fit multivariate Unbiased Random Walk with increasing (exponential
accelerating) rate of change through time.

Description

Function to find maximum likelihood solution to a multivariate Unbiased Random Walk model with
increasing (exponential accelerating) rate of change through time.

Usage

opt.accel.single.R(
yy,
method = "L-BFGS-B",
hess = FALSE,
pool = TRUE,
trace = FALSE,
iterations = NULL,
iter.sd = NULL

)

44 opt.accel.single.R

Arguments

yy a multivariate evoTS object.

method optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

pool indicating whether to pool variances across samples

trace logical, indicating whether information on the progress of the optimization is
printed.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

Details

The function searches - using an optimization routine - for the maximum-likelihood solution for
a multivariate Unbiased Random Walk model with increasing (exponential accelerating) rate of
change through time.

The argument ’method’ is passed to the ’optim’ function and is included for the convenience of
users to better control the optimization routine. The the default method (L-BFGS-B) seems to work
for most evolutionary sequences.

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Unbiased Random Walk model (from the paleoTS package) fitted to each time-series separately.
The starting value for r = 1.

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, R, r). The last
part of the output gives information about the number of parameters in the model (K), number of
samples in the data (n) and number of times the optimization routine was run (iter).

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

opt.accel.single.R.zero.corr 45

Examples

Generate an evoTS object by simulating a multivariate dataset
indata <- sim.multi.URW(60)

Fit a multivariate Unbiased Random Walk with an increasing rate of change through time.
opt.accel.single.R(indata)

opt.accel.single.R.zero.corr

Fit multivariate Unbiased Random Walk model with uncorrelated trait
changes and with increasing (exponential accelerating) rate of change
through time.

Description

Function to find maximum likelihood solution to a multivariate Unbiased Random Walk model with
uncorrelated trait changes and with increasing (exponential accelerating) rate of change through
time.

Usage

opt.accel.single.R.zero.corr(
yy,
method = "L-BFGS-B",
hess = FALSE,
pool = TRUE,
trace = FALSE,
iterations = NULL,
iter.sd = NULL

)

Arguments

yy a multivariate evoTS object.

method optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

pool indicating whether to pool variances across samples

trace logical, indicating whether information on the progress of the optimization is
printed.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

46 opt.accel.single.R.zero.corr

Details

The function searches - using an optimization routine - for the maximum-likelihood solution for
a multivariate Unbiased Random Walk model with uncorrelated trait changes and with increasing
(exponential accelerating) rate of change through time.

The argument ’method’ is passed to the ’optim’ function and is included for the convenience of
users to better control the optimization routine. The the default method (L-BFGS-B) seems to work
for most evolutionary sequences.

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Unbiased Random Walk model (from the paleoTS package) fitted to each time-series separately.
The starting value for r = 1.

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, R, r). The last
part of the output gives information about the number of parameters in the model (K), number of
samples in the data (n) and number of times the optimization routine was run (iter).

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

Examples

Generate an evoTS object by simulating a multivariate dataset
x <- sim.multi.URW(30)

Fit a multivariate Unbiased Random Walk model with an increasing rate of change through time.
opt.accel.single.R.zero.corr(x)

opt.decel.single.R 47

opt.decel.single.R Fit multivariate Unbiased Random Walk with decreasing (exponential
decaying) rate of change through time.

Description

Function to find maximum likelihood solution to a multivariate Unbiased Random Walk model with
decreasing (exponential decaying) rate of change through time.

Usage

opt.decel.single.R(
yy,
method = "L-BFGS-B",
hess = FALSE,
pool = TRUE,
trace = FALSE,
iterations = NULL,
iter.sd = NULL

)

Arguments

yy a multivariate evoTS object.

method optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

pool indicating whether to pool variances across samples

trace logical, indicating whether information on the progress of the optimization is
printed.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

Details

The function searches - using an optimization routine - for the maximum-likelihood solution for a
multivariate Unbiased Random Walk model with decreasing (exponential decaying) rate of change
through time.

The argument ’method’ is passed to the ’optim’ function and is included for the convenience of
users to better control the optimization routine. The the default method (L-BFGS-B) seems to work
for most evolutionary sequences.

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Unbiased Random Walk model (from the paleoTS package) fitted to each time-series separately.
The starting value for r = -1.

48 opt.decel.single.R.zero.corr

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, R, r). The last
part of the output gives information about the number of parameters in the model (K), number of
samples in the data (n) and number of times the optimization routine was run (iter).

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

References

Voje, K. L. 2020. Testing eco-evolutionary predictions using fossil data: Phyletic evolution follow-
ing ecological opportunity.Evolution 74:188–200.

Examples

Generate an evoTS object by simulating a multivariate dataset
indata <- sim.multi.URW(30)

Fit a multivariate Unbiased Random Walk model with a decreasing rate of change through time.
opt.accel.single.R(indata)

opt.decel.single.R.zero.corr

Fit multivariate Unbiased Random Walk model with uncorrelated trait
changes and with decreasing (exponential decaying) rate of change
through time.

Description

Function to find maximum likelihood solution to a multivariate Unbiased Random Walk model with
uncorrelated trait changes and with decreasing (exponential decaying) rate of change through time.

opt.decel.single.R.zero.corr 49

Usage

opt.decel.single.R.zero.corr(
yy,
method = "L-BFGS-B",
hess = FALSE,
pool = TRUE,
trace = FALSE,
iterations = NULL,
iter.sd = NULL

)

Arguments

yy a multivariate evoTS object.

method optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

pool indicating whether to pool variances across samples

trace logical, indicating whether information on the progress of the optimization is
printed.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

Details

The function searches - using an optimization routine - for the maximum-likelihood solution for
a multivariate Unbiased Random Walk model with uncorrelated trait changes and with increasing
(exponential accelerating) rate of change through time.

The argument ’method’ is passed to the ’optim’ function and is included for the convenience of
users to better control the optimization routine. The the default method (L-BFGS-B) seems to work
for most evolutionary sequences.

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Unbiased Random Walk model (from the paleoTS package) fitted to each time-series separately.
The starting value for r = -1.

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, R, r). The last
part of the output gives information about the number of parameters in the model (K), number of
samples in the data (n) and number of times the optimization routine was run (iter).

50 opt.joint.accel

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

References

Voje, K. L. 2020. Testing eco-evolutionary predictions using fossil data: Phyletic evolution follow-
ing ecological opportunity.Evolution 74:188–200.

Examples

Generate an evoTS object by simulating a multivariate dataset.
indata <- sim.multi.URW(30)

Fit a multivariate Unbiased Random Walk model with a decreasing rate of change through time.
opt.decel.single.R.zero.corr(indata)

opt.joint.accel Fit an Unbiased Random Walk with an accelerating rate of change
through time.

Description

Function to find maximum likelihood solutions to a Unbiased Random Walk with an accelerating
or decelerating rate of change through time.

Usage

opt.joint.accel(y, pool = TRUE, meth = "L-BFGS-B", hess = FALSE)

Arguments

y an univariate evoTS object.

pool logical indicating whether to pool variances across samples

meth optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

opt.joint.decel 51

Value

logL the log-likelihood of the optimal solution

AICc AIC with a correction for small sample sizes

parameters parameter estimates

modelName abbreviated model name

method Joint consideration of all samples

K number of parameters in the model

n the number of observations/samples

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

Examples

Generate a paleoTS object by simulating a univariate evolutionary sequence
y <- paleoTS::sim.GRW(30)

Fit the model
opt.joint.accel(y)

opt.joint.decel Fit an Unbiased Random Walk with an decelerating rate of change
through time.

Description

Function to find maximum likelihood solutions to a Unbiased Random Walk with an decelerating
or decelerating rate of change through time.

Usage

opt.joint.decel(y, pool = TRUE, meth = "L-BFGS-B", hess = FALSE)

52 opt.joint.decel

Arguments

y an univariate evoTS object.

pool logical indicating whether to pool variances across samples

meth optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

Value

logL the log-likelihood of the optimal solution

AICc AIC with a correction for small sample sizes

parameters parameter estimates

modelName abbreviated model name

method Joint consideration of all samples

K number of parameters in the model

n the number of observations/samples

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

References

Voje, K. L. 2020. Testing eco-evolutionary predictions using fossil data: Phyletic evolution follow-
ing ecological opportunity.Evolution 74:188–200.

Examples

Generate a paleoTS object by simulating a univariate evolutionary sequence
x <- paleoTS::sim.GRW(30)

Fit the model
opt.joint.decel(x)

opt.joint.OUBM 53

opt.joint.OUBM Fit an Ornstein-Uhlenbeck model with an optimum that evolves ac-
cording to a Unbiased Random Walk.

Description

Function to find maximum likelihood solutions to an Ornstein-Uhlenbeck model with an optimum
that evolves according to a Unbiased Random Walk.

Usage

opt.joint.OUBM(
y,
pool = TRUE,
meth = "L-BFGS-B",
hess = FALSE,
iterations = NULL,
iter.sd = NULL,
opt.anc = TRUE

)

Arguments

y an univariate paleoTS object.

pool logical indicating whether to pool variances across samples

meth optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

opt.anc logical, indicating whether the the ancestral trait state is at the optimum.

Value

logL the log-likelihood of the optimal solution

AICc AIC with a correction for small sample sizes

parameters parameter estimates

modelName abbreviated model name

method Joint consideration of all samples

K number of parameters in the model

n the number of observations/samples

54 opt.joint.URW.Stasis

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

References

Hansen, T. F., Pienaar, J. & Orzack, S. H. 2008. A Comparative Method for Studying Adaptation
to a Randomly Evolving Environment. Evolution 62:1965–1977.

Examples

Generate a paleoTS object by simulating a univariate evolutionary sequence
x <- paleoTS::sim.GRW(60)

Fit the model
opt.joint.OUBM(x)

opt.joint.URW.Stasis Optimization and log-likelihoods for pairs of models.

Description

A collections of functions that serves the function fit.mode.shift. See fit.mode.shift for info.

Usage

opt.joint.URW.Stasis(
y,
gg,
cl = list(fnscale = -1),
pool = TRUE,
meth = "L-BFGS-B",
hess = FALSE

)

opt.single.R 55

Arguments

y a paleoTS object.

gg numeric vector indicating membership of each sample in segments

cl control list to be passed to optim

pool logical indicating whether to pool variances across samples

meth optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

Details

In general, users will not be access these functions directly, but instead use the wrapper function,
which use these functions to find the best-supported parameter values.

Note

This function is not likely to be called directly by the user.

Author(s)

Kjetil Lysne Voje

opt.single.R Fit multivariate Unbiased Random Walk model.

Description

Function to find maximum likelihood solution to a multivariate Unbiased Random Walk model.

Usage

opt.single.R(
yy,
method = "L-BFGS-B",
hess = FALSE,
pool = TRUE,
trace = FALSE,
iterations = NULL,
iter.sd = NULL

)

56 opt.single.R

Arguments

yy a multivariate evoTS object.

method optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

pool indicating whether to pool variances across samples

trace logical, indicating whether information on the progress of the optimization is
printed.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

Details

The function searches - using an optimization routine - for the maximum-likelihood solution for a
multivariate Unbiased Random Walk model.

The argument ’method’ is passed to the ’optim’ function and is included for the convenience of
users to better control the optimization routine. The the default method (L-BFGS-B) seems to work
for most evolutionary sequences.

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Unbiased Random Walk model (from the paleoTS package) fitted to each time-series separately.

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, R). The last part of
the output gives information about the number of parameters in the model (K), number of samples
in the data (n) and number of times the optimization routine was run (iter).

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

opt.single.R.zero.corr 57

References

Revell, L. J. & Harmon, L. Testing quantitative genetic hypotheses about the evolutionary rate
matrix for continuous characters. Evolutionary Ecology Research 10, 311–331 (2008).

Examples

Generate an evoTS objects by simulating a multivariate dataset
x <- sim.multi.URW(30)

Fit a multivariate Unbiased Random Walk model.
opt.single.R(x)

opt.single.R.zero.corr

Fit multivariate Unbiased Random Walk model with uncorrelated trait
changes.

Description

Function to find maximum likelihood solution to a multivariate Unbiased Random Walk model with
uncorrelated trait changes.

Usage

opt.single.R.zero.corr(
yy,
method = "L-BFGS-B",
hess = FALSE,
pool = TRUE,
trace = FALSE,
iterations = NULL,
iter.sd = NULL

)

Arguments

yy a multivariate evoTS object.

method optimization method, passed to function optim. Default is "L-BFGS-B".

hess logical, indicating whether to calculate standard errors from the Hessian matrix.

pool indicating whether to pool variances across samples

trace logical, indicating whether information on the progress of the optimization is
printed.

iterations the number of times the optimization method is run from different starting points.
Default is NULL, meaning the optimization is run once.

iter.sd defines the standard deviation of the Gaussian distribution from which starting
values for the optimization routine is run. Default is 1.

58 opt.single.R.zero.corr

Details

The function searches - using an optimization routine - for the maximum-likelihood solution for a
multivariate Unbiased Random Walk model with uncorrelated trait changes.

The argument ’method’ is passed to the ’optim’ function and is included for the convenience of
users to better control the optimization routine. The the default method (L-BFGS-B) seems to work
for most evolutionary sequences.

Initial estimates to start the optimization come from maximum-likelihood estimates of the univariate
Unbiased Random Walk model (from the paleoTS package) fitted to each time-series separately.

It is good practice to repeat any numerical optimization procedure from different starting points.
This is especially important for complex models as the log-likelihood surface might contain more
than one peak. The number of iterations is controlled by the argument ’iterations’. The function
will report the model parameters from the iteration with the highest log-likelihood.

Value

First part of the output reports the log-likelihood of the model and its AICc score. The second part
of the output is the maximum log-likelihood model parameters (ancestral.values, R). The last part of
the output gives information about the number of parameters in the model (K), number of samples
in the data (n) and number of times the optimization routine was run (iter).

Note

The models have been implemented to be compatible with the joint parameterization routine in the
package paleoTS. The optimization is therefore fit using the actual sample values, with the auto-
correlation among samples accounted for in the log-likelihood function. The joint distribution of
sample means is multivariate normal, with means and variance-covariances determined by evolu-
tionary parameters and sampling errors.

Author(s)

Kjetil Lysne Voje

References

Revell, L. J. & Harmon, L. Testing quantitative genetic hypotheses about the evolutionary rate
matrix for continuous characters. Evolutionary Ecology Research 10, 311–331 (2008).

Examples

Generate an evoTS object by simulating a multivariate dataset
x <- sim.multi.URW(30)

Fit a multivariate Unbiased Random Walk model with uncorrelated trait changes.
opt.single.R.zero.corr(x)

plotevoTS 59

plotevoTS Plot a paleoTS object

Description

Plot a paleoTS object (slightly modified version of the same function in paleoTS)

Usage

plotevoTS(
x,
nse = 1,
pool = FALSE,
add = FALSE,
modelFit = NULL,
pch = 19,
lwd = 1.5,
ylim = NULL,
xlab = NULL,
ylab = NULL,
...

)

Arguments

x a paleoTS object
nse the number of standard errors represented by the error bars on the plot; defaults

to 1
pool logical indicating if variances should be pooled across samples for the purposes

of displaying error bars; defaults to FALSE
add logical, if TRUE, adds to existing plot
modelFit optional model fit from fitting functions
pch plotting symbol, defaults to 19
lwd line width, defaults to 1.5
ylim optional, y-limits of the plot
xlab a title for the x axis
ylab a title for the y axis
... other arguments passed to plotting functions

Value

The results are plotted.

Author(s)

Kjetil Lysne Voje

60 plotevoTS.multivariate

plotevoTS.multivariate

Plots multivariate evolutionary sequence (time-series) data set

Description

Function to plot multivariate evolutionary sequence (time-series), showing trait means over time.

Usage

plotevoTS.multivariate(
yy,
nse = 1,
col = NULL,
lty = NULL,
lwd = NULL,
pch = NULL,
x.label = NULL,
y.label = NULL,
y_min = NULL,
y_max = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
axes = NULL

)

Arguments

yy a multivariate evoTS object

nse the number of standard errors represented by the error bars on the plot; default
is 1

col vector indicating colors

lty line type

lwd line width

pch plotting symbols

x.label label on x axis

y.label label on y axis

y_min minimum value of y axis

y_max maximum value of y axis

cex.axis Specify the size of the tick label numbers/text

cex.lab specify the size of the axis label

cex.main specify the size of the title text

axes logical, whether to plot axes or not

ribs_S.yellowstonensis 61

Value

The results are plotted.

Author(s)

Kjetil Lysne Voje

Examples

Generate two evolutionary sequences (time-series)
x1 <- paleoTS::sim.Stasis(60, vp=1)
x2 <- paleoTS::sim.Stasis(60, vp=1)

Make a multivariate data set
x1_x2<-make.multivar.evoTS(x1, x2)

Plot the data
plotevoTS.multivariate(x1_x2, y_min=-1, y_max=1)

ribs_S.yellowstonensis

Evolutionary sequence (time-series) of phenotypic change in the num-
ber of ribs in the lineage Stephanodiscus yellowstonensis

Description

Phenotypic data (ribs) from a centric diatom lineage Stephanodiscus yellowstonensis. The time
series spans about 14 000 years. The data set contains data on the number of costae (ribs) per
valve. The data consists of an objects of class paleoTS (ribs_S.yellowstonensis). Objects of class
paleoTS can be analyzed in evoTS. The object (trait data set) contains a vector of sample means
(mm), sample variances (vv), sample sizes (nn) and sample ages (tt). The oldest sample is listed
first. The data spans an interval of 13728 years.

Usage

data(ribs_S.yellowstonensis)

Format

An object of class "paleoTS".

References

Theriot et al. 2006. Late Quaternary rapid morphological evolution of an endemic diatom in Yel-
lowstone Lake, Wyoming. Paleobiology 32:38-54

62 sim.accel.decel

Examples

ln.ribs<-paleoTS::ln.paleoTS(ribs_S.yellowstonensis)
ln.ribs$tt<-ln.ribs$tt/(max(ln.ribs$tt))
opt.joint.decel(ln.ribs)

sim.accel.decel Simulate an Unbiased Random Walk with an accelerating or deceler-
ating rate of change through time.

Description

Function to simulate an evolutionary sequence data set according to an Unbiased Random Walk
with an accelerating or decelerating rate of change through time.

Usage

sim.accel.decel(
ns = 20,
vs = 0.5,
r = 0.2,
vp = 0.2,
nn = rep(20, ns),
tt = 0:(ns - 1)

)

Arguments

ns number of samples in time-series

vs step variance of the trait

r the parameter controlling the exponential decay (if negative) or increase (if pos-
itive) of the rate (vs) through time.

vp phenotypic variance of each sample

nn vector of the number of individuals in each sample (identical sample sizes for
all time-series is assumed)

tt vector of sample times (ages

Value

An evolutionary sequence (time-series) data set (a paleoTS object)

Author(s)

Kjetil Lysne Voje

sim.multi.OU 63

Examples

##Simulate an unbiased random walk where the rate decelerates through time.
x<-sim.accel.decel(40, r=-0.5)

Plot the data
plotevoTS(x)

sim.multi.OU Simulate multivariate Ornstein-Uhlenbeck evolutionary sequence data
sets

Description

Function to simulate a multivariate Ornstein-Uhlenbeck evolutionary sequence data set.

Usage

sim.multi.OU(
ns = 30,
anc = c(0, 0),
optima = c(3, 2),
A = matrix(c(7, 0, 0, 6), nrow = 2, byrow = TRUE),
R = matrix(c(0.05, 0, 0, 0.05), nrow = 2, byrow = TRUE),
vp = 0.1,
nn = rep(30, ns),
tt = 0:(ns - 1)

)

Arguments

ns number of samples in time-series

anc the ancestral trait values

optima the optimal trait values

A the pull matrix.

R the drift matrix

vp within-population trait variance

nn vector of the number of individuals in each sample (identical sample sizes for
all time-series is assumed)

tt vector of sample ages, increases from oldest to youngest

Value

A multivariate evolutionary sequence (time-series) data set.

64 sim.multi.URW

Note

The Ornstein Uhlenbeck model is reduced to an Unbiased Random Walk when the alpha parameter
is zero. It is therefore possible to let a trait evolve as an Unbiased Random Walk by setting the
diagonal element for that trait to a value close to zero (e.g. 1e-07). Elements in the diagonal of A
cannot be exactly zero as this will result in a singular variance-covariance matrix.

Author(s)

Kjetil Lysne Voje

Examples

##Define the A and R matrices

A_matrix<-matrix(c(4,-2,0,3), nrow=2, byrow = TRUE)
R_matrix<-matrix(c(4,0.2,0.2,4), nrow=2, byrow = TRUE)

Generate an evoTS object by simulating a multivariate dataset
data_set<-sim.multi.OU(40, optima = c(1.5,2),A=A_matrix , R = R_matrix)

plot the data
plotevoTS.multivariate(data_set)

sim.multi.URW Simulate multivariate evolutionary sequence data that evolve accord-
ing to an Unbiased Random Walk

Description

Function to simulate multivariate evolutionary sequence data that evolve according to an Unbiased
Random Walk

Usage

sim.multi.URW(
ns = 30,
anc = c(0, 0),
R = matrix(c(0.5, 0, 0, 0.5), nrow = 2, byrow = TRUE),
vp = 0.1,
nn = rep(30, ns),
tt = 0:(ns - 1)

)

sim.OUBM 65

Arguments

ns number of samples in time-series
anc the ancestral trait values
R the drift matrix
vp within-population trait variance
nn vector of the number of individuals in each sample (identical sample sizes for

all time-series is assumed)
tt vector of sample ages, increases from oldest to youngest

Value

A multivariate evolutionary sequence (time-series) data set.

Author(s)

Kjetil Lysne Voje

Examples

Create a multivariate dataset
data_set<-sim.multi.URW(40, R = matrix(c(0.2,0.1,0.1,0.3), nrow=2, byrow = TRUE))

plot the data
plotevoTS.multivariate(data_set)

sim.OUBM Simulate an Ornstein-Uhlenbeck process with optimum changing ac-
cording to an unbiased random walk

Description

Function to simulate an Ornstein-Uhlenbeck evolutionary sequence data set with an optimum mov-
ing according to an unbiased random walk.

Usage

sim.OUBM(
ns = 20,
anc = 0,
theta.0 = 1,
alpha = 0.3,
vstep.trait = 0.1,
vstep.opt = 0.1,
vp = 1,
nn = rep(20, ns),
tt = 0:(ns - 1)

)

66 sim.OUBM

Arguments

ns number of samples in time-series

anc the ancestral trait values

theta.0 the ancestral value for the optimum

alpha strength of attraction to the optimum

vstep.trait step variance of the trait

vstep.opt step variance of the optimum

vp phenotypic variance of each sample

nn vector of the number of individuals in each sample (identical sample sizes for
all time-series is assumed)

tt vector of sample times (ages

Value

An evolutionary sequence (time-series) data set (a paleoTS object)

Author(s)

Kjetil Lysne Voje

Examples

##Create data
x<-sim.OUBM(50, theta.0 = 5, alpha = 0.6, vstep.opt = 0.5)

plot the data
plot(x)

Index

∗ datasets
diameter_S.yellowstonensis, 10
ribs_S.yellowstonensis, 61

as.evoTS.multi.BW.acceldecel.fit, 3
as.evoTS.multi.BW.fit, 4
as.evoTS.multi.OU.fit, 5
as.evoTS.multi.URW.fit, 6
as.evoTS.multi.URW.shift.fit, 8
as.evoTSfit.OUBM, 9

diameter_S.yellowstonensis, 10

fit.all.univariate, 10
fit.mode.shift, 11
fit.multivariate.OU, 13
fit.multivariate.OU.user.defined, 16
fit.multivariate.URW, 19
fit.multivariate.URW.shift, 21

logL.joint.accel.decel.single.R, 23
logL.joint.accel.decel.single.R.zero.corr,

24
logL.joint.accel_decel, 25
logL.joint.multi.OUOU, 25
logL.joint.multi.OUOU.user, 26
logL.joint.multi.R, 28
logL.joint.OU.BM, 29
logL.joint.single.R, 30
logL.joint.single.R.zero.corr, 31
logL.joint.Stasis.OU, 32
logL.joint.URW.URW, 32
loglik.surface.accel, 33
loglik.surface.decel, 34
loglik.surface.GRW, 35
loglik.surface.OU, 36
loglik.surface.OUBM, 38
loglik.surface.stasis, 39
loglik.surface.URW, 40

make.multivar.evoTS, 42

opt.accel.single.R, 43
opt.accel.single.R.zero.corr, 45
opt.decel.single.R, 47
opt.decel.single.R.zero.corr, 48
opt.joint.accel, 50
opt.joint.decel, 51
opt.joint.OUBM, 53
opt.joint.URW.Stasis, 54
opt.single.R, 55
opt.single.R.zero.corr, 57

plotevoTS, 59
plotevoTS.multivariate, 60

ribs_S.yellowstonensis, 61

sim.accel.decel, 62
sim.multi.OU, 63
sim.multi.URW, 64
sim.OUBM, 65

67

	as.evoTS.multi.BW.acceldecel.fit
	as.evoTS.multi.BW.fit
	as.evoTS.multi.OU.fit
	as.evoTS.multi.URW.fit
	as.evoTS.multi.URW.shift.fit
	as.evoTSfit.OUBM
	diameter_S.yellowstonensis
	fit.all.univariate
	fit.mode.shift
	fit.multivariate.OU
	fit.multivariate.OU.user.defined
	fit.multivariate.URW
	fit.multivariate.URW.shift
	logL.joint.accel.decel.single.R
	logL.joint.accel.decel.single.R.zero.corr
	logL.joint.accel_decel
	logL.joint.multi.OUOU
	logL.joint.multi.OUOU.user
	logL.joint.multi.R
	logL.joint.OU.BM
	logL.joint.single.R
	logL.joint.single.R.zero.corr
	logL.joint.Stasis.OU
	logL.joint.URW.URW
	loglik.surface.accel
	loglik.surface.decel
	loglik.surface.GRW
	loglik.surface.OU
	loglik.surface.OUBM
	loglik.surface.stasis
	loglik.surface.URW
	make.multivar.evoTS
	opt.accel.single.R
	opt.accel.single.R.zero.corr
	opt.decel.single.R
	opt.decel.single.R.zero.corr
	opt.joint.accel
	opt.joint.decel
	opt.joint.OUBM
	opt.joint.URW.Stasis
	opt.single.R
	opt.single.R.zero.corr
	plotevoTS
	plotevoTS.multivariate
	ribs_S.yellowstonensis
	sim.accel.decel
	sim.multi.OU
	sim.multi.URW
	sim.OUBM
	Index

